) 1.	_		
Name:	>×	uti	D	N	•

Section: _____

Square Matrices

1. Suppose that A is an $n \times n$ matrix. Prove the following statements by "walking through the tree" of the Invertible Matrix Theorem. You must show every step.

(a) Suppose that an $n \times n$ matrix A is invertible Prove that the columns of A span \mathbb{R}^n .

A is invertible

→ A~In

⇒ A has a pivots

⇒ A has pivot in each Row

→ Columns of A span Rⁿ

(b) Suppose that an $n \times n$ matrix A is not invertible. Prove that the columns of A are linearly dependent.

=> A × In => A doesn't have n pivots => A doesn't have pivot in each <u>column</u> ⇒> columns of A are <u>Dependent</u>

(c) Suppose that A is an $n \times n$ matrix, and that $A\vec{x} = \vec{0}$ has a unique solution. Prove that A is invertible.

If Ax=0 has unique solution

⇒ A has n pivots

⇒ A has n pivots

⇒ A nIn ⇒ A is invertible

(d) Suppose that A is an $n \times n$ matrix, and that $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ does not have a solution for some $\vec{\mathbf{b}}$ in \mathbb{R}^n . Prove that A is not invertible.

AX=15 doesn't always have a solution

=> NOT a pivot in each row

>> NOT a pivots

>> Ax In

>> A NOT invertible

Section:

2. Rewrite $(AB)^{-1}(B+A)$ using the properties of matrix operations.

(Careful: Multiplication is *not* commutative).

3. Rewrite $(B+A)(AB)^{-1}$ using the properties of matrix operations.

(Careful: Multiplication is not commutative).

$$(B+A)(AB)^{-1}$$
= $(B+A) \cdot B^{-1}A^{-1}$
= $BB^{-1}A^{-1} + AB^{-1}A^{-1}$
done!

= $A^{-1} + AB^{-1}A^{-1}$
cannot go furthe.

Section:

4. Suppose that $2\vec{\mathbf{a}} + 3\vec{\mathbf{b}} = \vec{\mathbf{c}}$. Prove that $A\vec{\mathbf{c}}$ is in the span of $A\vec{\mathbf{a}}, A\vec{\mathbf{b}}$.

5. Suppose that the second column of B is all zero's. What can be said about the third column of AB?

6. Suppose the first two columns $\vec{\mathbf{b}}_1$, and $\vec{\mathbf{b}}_2$, of B are equal. What can be said about the columns of B?

7. Suppose that the columns of B are linearly dependent. Prove that the columns of AB are linearly dependent.

Here is a relation

$$c_1b_1^2 + \cdots + c_nb_n^2 = \overline{0}$$

then $A(c_1b_1^2 + \cdots + c_n \cdot b_n^2) = A \cdot \overline{0}$
 $c_1 Ab_1^2 + \cdots + c_n \cdot Ab_n^2 = \overline{0}$

Section:

Non-Square Matrices

1. Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is linear. Prove that T cannot be one-to-one.

PCO T is one-to-one (=) Std matrix A has pivot in each column

but a 2x3 matrix A

cannot have 3 pivots in only two rows

Therefore T & cannot be one-to-one.

2. Give an example of a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ that is onto.

define
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $T(\vec{x}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is onto \mathbb{R}^2

3. Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is linear. Is it true that T is one-to-one if and only if T is onto? Why doesn't this violate the invertible matrix theorem?

NO: We have seen above that

No: Cannot be one-to-one

but it can be onto.

This lose not violate the IMT because T is not defined by a Square matrix. Name:

Section: _

Span
$$\{\vec{v_1}, \vec{v_2}, \vec{v_3}\} = \{\vec{b} \in \mathbb{R}^n\}$$

(b) Define linear **Independence** of vectors $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3\}$.

the set is independent

(=>)

the equation
$$X_1V_1+X_2V_2+X_3V_3=\overline{0}$$
 has only the trivial solution

(c) Define "T is a linear transformation"

$$T(\vec{x}+\vec{v}) = T(\vec{x}) + T(\vec{v})$$
 for ALL \vec{x}, \vec{v} in \vec{R} $T(c.\vec{x}) = c.T(\vec{x})$ and all $c.in \vec{R}$

(d) Define "T is one-to-one"

(e) Define "T is onto"

Section:

Theorems

Theorem 2 The reduced echelon form of a linear system has three possible cases

NOTECTO L

A serior 2 The reduced center form of a micar system has three possible cases

(a) The system has o solutions if it contains [0...0]

(b) The system has _____ 1 ___ solutions if __it has a pivot in each coeff Column

(c) The system has one many solutions if it has a coeff column without a pivot

Theorem 4: The columns of an $m \times n$ matrix A span \mathbb{R}^m

if and only if there is a pivot in each Row

Shortcuts to Recognize Dependence

- If one column of A is a multiple of another, then the columns of A are linearly dependent.
- If $\{\vec{\mathbf{a}}_1, \dots, \vec{\mathbf{a}}_n\}$ contains $\vec{\mathbf{0}}$, then $\{\vec{\mathbf{a}}_1, \dots, \vec{\mathbf{a}}_n\}$ is linearly dependent.
- If an $m \times n$ matrix A has more columns than rows (if n > m), then the columns of A are linearly dependent.

Theorem 5 If A is an $m \times n$ matrix, $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, Then

• $A(\vec{\mathbf{u}} + \vec{\mathbf{v}}) = \mathbf{A}\vec{\mathbf{u}} + \mathbf{A}\vec{\mathbf{v}}$

• $A(c \cdot \vec{\mathbf{u}}) = \mathbf{c} \cdot \mathbf{A} \vec{\mathbf{u}}$

Properties of Linear Transformations

• If T is linear, then $T(\vec{0}) = \underline{}$

• T is linear $\iff T(c \cdot \vec{\mathbf{u}} + d \cdot \vec{\mathbf{v}}) = \underline{c \cdot T(\vec{\kappa}) + Q \cdot T(\vec{v})}$

Theorem 10 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear.

Then there is a unique $m \times n$ matrix A s.t. $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$.

In Fact,
$$A = \begin{bmatrix} T(e_1) & \cdots & T(e_n) \end{bmatrix}$$
 where $e_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \cdots = e_n = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Theorem 12 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear with standard matrix A.

(a) T is onto \iff The columns of A span $\mathbb{R}^m \iff$ Pivot in each Row

(b) T is one-to-one \iff The columns of A are linearly independent \iff pivot in each Columns